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A boundary element method is described in detail for the solution of two-dimensional
steady-state convective heat diffusion problems in homogeneous and isotropic media with
both linear and nonlinear boundary conditions. Through an exponential variable transforma-
tion, the introduction of fundamental solutions and the use of Green's theaorem, the problem
is reduced to one involving values of temperature and/or heat flux in the form of an integral
only along the boundary. The integral is solved numerically for three examples Two of
them have linear boundary conditions and their numerical results are compared with the
corresponding analytical solutions. The other has a nonlinear boundary condition due to heat
radiation and an itcrative procedure is applied to obtain the numerical solution. The fictitious
source formulation leading to the boundary element solution of the same problems is
discussed as an alternative. The extension of the method to formulate transient and‘or
three-dimensional convective heat diffusion problems is aiso describad, and the relevant
fundamental soiutions are given. Finally. the exponential variable transformation is applied to
construct a funcrional of variational principle which leads to developing a finite element
formulation of the problems with a banded, symmetric stiffness matrix. € 1991 Academic

Press, Inc.

I. INTRODUCTION

Convective heat (and/or mass) transfer occurs as a basic phenomenon in many
physical processes, such as single crystal growth [1], thin film growth [2], optical
fiber processing {3-47, laser-assisted surface hardening [3], continucus casting
[6], etc. In these processes, a knowledge of the distribution of field variables such
as temperature or concentration is of vital importance to the understanding of the
physics controlling the properties of the materials to be processed. Because of this
importance, there have been continuous research efforts toward the more efficient
and accurate prediction of the field distribution. In the case where the medium is
fluid the complete mathematical description of the heat convection problems would
be a set of equations composed of the Navier-Stokes equations, which govern the
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256 LI AND EVANS

flow field, coupled with the Fourier heat conduction equation with convective terms
included. However, in some situations [1-6], for example, where the workpiece is
solid and moves as a whole at a constant velocity with reference to a fixed coor-
dinate, the heat transfer mechanism can be described by heat conduction with a
constant convective velocity, and hence the solutional algorithm should be greatly
simplified.

Numerical algorithms developed to solve this type of problem can be classified,
in general, into two categories, the domain method and the boundary method, with
the former comprised of the finite difference and finite element methods and the
latter comprised of the boundary element or boundary integral methods. All the
algorithms, however, have one feature in common in that they start with the pure
diffusion equation and then incorporate a special treatment of the convection term.

The approach adopted in the finite difference method is to approximate the
partial differential operators by finite difference operators. Likewise, the convection
term is approximated by either a forward-, central-, or backward difference scheme
depending on the geometric locations under consideration [5,6]. In the finite
element approach, on the other hand, the weighted residue method or weak
formulation is often used to formulate the problem, which usually results in an
unsymmetric banded coefficient matrix because of the presence of the convection
term. The solution of the resultant unsymmetric matrix is often computationally
time-consuming, which is especially true when the nonlinear properties are to be
accounted for. This has motivated some investigators [8] to treat the convection
term as a “source term” in order to preserve the banded symmetry for the resultant
matrix, so as to facilitate the use of efficient linear solvers. In doing so, however, an
iterative procedure must be used.

In recent years, there has been increasing interest in using the boundary element
method to solve virtually all kinds of applied continuum mechanics problems
because of its potential to reduce problem dimensionality. The method formulates
the problems using properties only along the boundaries of the problem domain
through the use of Green’s second identity and the corresponding fundamental
solution or Green’s function in infinite space [9-107]. This should be very attractive
because using the boundary properties alone means the reduction of the number of
unknowns to be solved for, thus saving computing time. Sometimes this approach
is also considered as a generalization of weighted residual formulation with the
fundamental solution regarded as a special weighting function [11].

Treatments of heat convection problems in this category are those of Skegart and
Brebbia [127] and of Onishi et al. [13]. In their approaches, the convection term
is treated as a “source” term and the fundamental solution to the Laplacian equa-
tion (or pure diffusion equation) is used. As a result, an iterative procedure has to
be used to solve the resulting discretized equations. Moreover, the attraction of
reducing problem dimensionality seems to disappear since the “source” is fully
populated over the whole domain. The scheme is not particularly suitable for heat
diffusion with a uniform motion as the problem could be otherwise entirely
formulated only along the boundaries (see below). Nevertheless, their approaches
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are general in the sense that they are applicable tc the problems of diffusion with
both constant and/or varying flow field.

In this paper, a methodology for the boundary element (or boundary integral}
solution of heat convection-diffusion problems based on an exponential transforma-
tion is described. While the transformation has been used elsewhere [ 14157 for the
purpose of generating analytical solutions, its use in assisting the formulation of
boundary element solutions to problems involving both convection and diffusion
has been largely overlooked and only a few papers have been published [16-181.
fkeuchi eral. [16,17] presented a constant boundary element solution of
convective heat transfer in three dimensions with linear boundary conditions whiie
Okamoto [18] derived a boundary element formulation of & chemical reaction
system where both convective diffusion and chemical reaction occur. In what
foliows, the boundary element formulation and implementation of a two-dimen-
sional convection—diffusion problem is first presented, foliowed by its applicaticn to
threc examples with both linear and nonlinear boundary conditions, and the
numerical results are compared with the analytical solutions available. A fictitious
source formulation leading to the boundary element solution is then discussed as an
alternative approach. Also, a functional of variational principle is constructed
through the application of the exponential transformation, which naturally puts the
finite element formulation of this type of problem on the basis of variational
priniciple and results in a banded, symmetric linear system. Finally, extension of
the formulation and solution procedures to the solution of time-dependent and
three-dimensional heat convection—diffusion problems is discussed and relevany
fundamental solutions are presented.

II. BouNDARY ELEMENT FORMULATION AND NUMERICAL IMPLEMENTATION

A. Problem and Formulation

The problem of heat convection—diffusion to be considered is illustrated in Fig. i.
where a workpiece moves at a constant velocity V and alters its temperaturs
distribution by exchanging heat with the surroundings. When formulated in Fuler’s
coordinates, the problem takes the form

VT —20(%-VT) =0, 0<x<i, 0< y<h, b
where T is the temperature, x the unit vector of x-direction, and x= Vpc,p,2k in
which p is the density, ¢, the heat capacity, and & the thermal conductivity. The
boundary conditions imposed are assumed to be of Dirichlet, Neumann, radiation,
or mixed type.

The approach taken here to develop the boundary element formulation of the
above problem involves reducing the problem to a Helmhoitz equation through a
variable transformation and subsequently solving the equation.
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Fic. 1. Schematic representation of a convective heat diffusion problem.

The variable transformation has the form [ 14, 15]
T =ge™. (2)
Upon substituting it into Eq. (1) and rearranging, one obtains the Helmholtz
equation as
Vip—a’p =0, (3)

where ¢ is an intermediate variable.

Note that Eq. (3) is similar to an equation of wave propagation but different
from it in that the coefficient of the second term is a real number. This real number,
in the terminology of wave scattering, indicates a decay of thermal “waves”
associated with Eq. (3).

The fundamental solution corresponding to Eq. (3) should satisfy the equation

V3G* —a’Gl= —6(r—r') 4)
and, in general, is expressible as [9],
G*r.¥) = — 3 HE(i alr =) (5)
but can be cast in a more useful form [19], ie,

1
G*(r, 1) =5 Kolla(r — 1)), (6)

where H{» is the Hankel function of the second kind of order zero, i_—':V/ —1,
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r—r'=[(x—xY+(y—y)*]" and K, the modified Bessel function of the
second kind of order zero.

The general procedures leading to the boundary integral formulation are
illustrated as follows. Upon multiplying Eq. (3) by G* and Eq.(4) by ¢ and
subtracling, followed by integrating over the whole domain, one has

| str—r) d(r) du'=J' (G*V2p — gV2G*) dv'. (7

Y0

While the domain integral on the right-hand side can be reduced to a boundary
integral by applying Green’s second identity,

| 6V —gViG*) o= § (G*g—gq*)r ®)

~ a8

that on the left-hand side can be integrated analytically by applving a limit
procedure {207 when r lies on the boundary, viz.,

Cr) g =| o —r') gir') de

Py

In the above two equations, 2 represents the domain of interest, 0@ its boundary.
g the derivative of ¢, and ¢* the derivative of the fundamental sotution G*,
oG*  |a| N ¢ St 48 Y ¥
— Ki(Jolr =) - —7—,

L

*:

' 2n

P
[
<o

where K, is the modified Bessel function of the first kind of order one. The coef-
ficient C(r) generally takes the following values depending on the location of ¢
21t

et

when r lies inside domain &

90—

when r lies on a smooth boundary 2G

\'
Cir)=4
i
L= ,)/2m when r lies on a nonsmooth boundary 442,

where 7, and 7y, are the angles between the outward normal of the non-smooth
poundary and x-direction around a sharp corner point.

Upon substituting Eqs. (8) and (9) back into Eq. (7), followed by the inverse
transformation of Eq. (2) and rearranging, one obtains the integral formulation of
the convective diffusion problems using the field values only along the boundaries,
ie.,

) ) . 6G* n R
c(r) nr>+Jr T(r) e~ S drw)+ | aT(r)e % -0 25 G g
a2 an F-tel U}"
; . eT
= Gre— 0 gr, o

Iz on’
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Note that the above boundary integral may be derived directly starting with Eq. (1}
if its corresponding fundamental solution is regarded as

G** = G*e ™™~ (12)

B. Boundary Element Implementation

The detailed procedures by which the boundary integral equation (12) is solved
are documented in the literature [21, 22]. In general, they involve discretizing the
relevant boundaries into small elements over each of which a polynomial inter-
polation function of unknowns is constructed, then evaluating the source-response
coefficients between the boundary elements, and finally solving the resultant matrix
equations for the unknowns. Polynomials of various degree may be used as an
interpolation function over an element, but the choice is usually made based on
a combination of the accuracy requirement and computational efficiency. In this
study, a linear element is universally used in generating the results that are presented
in the next section.

Following the discretization procedure and also making use of the isoparametric
elements to represent the geometric variation of the boundaries, one can write the
boundary element form of the integral equation for a point under consideration, r;,
as

Clr) Tr)+ ¥ { [ e (q*(r,-, r(e)

(3 N ;
5 ,G*(rl,r(é)))e—x(x(g)-x,) 17(E)] ds}{;]}

= IEV: LY (), ¥2(E)] G*(x;, ¥/ (&) e O =50 | J(&)| d E (13)
; 2Q,(8) q

where , (p=1, 2) is the interpolation function, |J(¢)| the Jacobian of the coor-
dinate transformation, ¢ the local coordinate, N the total number of boundary
elements, and j the element number.

After applying Eq. (13) to all boundary nodes, one finally obtains a set of
equations which, when written in matrix form, become

[H){T}=[G1{q}, (14)
where
Gy=g +gt) (15)
h(z) hm f fg
1]:{ 2) 2) of ];él (16)
h ¥1+h‘ +C;, for j=i
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and gt*) and h{¥ are of the form
gﬁ.k/'):J Yil(E) GHr,r'($)) e O L)) dE (173
’ Q)
o _ [ ” s ox'(d) s
mO=| (q*(r,-, e(En+2 S ge e m)
0,19 7 ,

X @ IO x| JEy) gE, (183

The above element integrals can be evaluated numerically using Gaussian
quadrature when node i does not belong to the jth element. In the present study,
the four-point integration rule is used. The modified Bessel functions of the second
kind of order zero or one are approximated by the polynomials given by
Abramowitz and Stegun [23].

When node / happens to lie on the jth element, however, the Gauchy principal
value of the integrals must be taken because of the occurrence of singularity in the
fundamental solution. Caution must be exercised in treating the singularity here as
it plays a crucial role in determining the accuracy of the solution. Although some
numerical quadrature rules have been developed for estimating the integration of
singularities [21]. they apply only to some simple cases and thus have limited use.
As a rule of thumb, the term involving singularity should be analytically evaluated
whenever possible in order to minimize errors in computation. Since the treatment
of singularities encountered in the present study is tedious, only an outline is given
below and the details are left in the Appendix. In the above equations, the integral
involving ¢* is zero as a consequence of orthogonality between the outward norma!
of the jth element and the direction of the integration path. Of the two g, terms,
one can be shown to have a well-behaved integrand, thus permitting a numerical
integration, and the other may be integrated analytically (see Appendix).

Before the matrix equation (14) is solved, the boundary conditions mus: be
imposed. With the Dirichlet and Neumann boundary conditions, Eq. (14} can be
rearranged such that

[K1{u} = {F}, (19)

where {u} is a set of unknowns of temperature or its derivative. Equation {19) is
then solved by the standard Gaussian elimination method.
When part of the boundary is subject to boundary conditions of mixed type, is..

A
cT
—=d—eT. {25

an

the discretized matrix equations for this part of the boundary will be

(HI{T}=[Gl{q} =[GI{D}~[E}T}} {2%)
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or

([H]+[ED{T}=[G1{D} (22)

which has the same form as Eqgs. (19). In this case, after the system of Egs. (19) is
solved, the normal derivatives of potentials along that part of the boundary can be
evaluated pointwise using Eq. (20).

When nonlinear boundary conditions (e.g., due to heat radiation) are considered,
the coefficients d and e in Eq. (20) are temperature dependent and so are [K] and
{F}. Consequently, an iterative procedure must be employed to solve the system of
the resulting nonlinear equations. There are available many algorithms [24, 257.
Some of them, which are based on the Newton-Raphson and/or optimization
schemes and possess a relatively high convergence rate, have been successfully
applied to solve nonlinear potential problems [26-297. For the sake of illustration,
a simple successive substitution procedure is adopted in this study, viz.,

[K(T,_,)]{u;} = {F(T _ )} (23)
The iteration continues until the present tolerance, J, on each individual u; is met,

————”’—"’1]<5. (24)

u;

It is noteworthy that, in contrast to divergence encountered with the use of the
successive substitution in pure nonlinear diffusion problems [217], this study has
found that convergence is well achieved within 10 iterations for the various cases
tested (see below) for a specified =1x10"*

III. NUMERICAL APPLICATIONS

In this section, the algorithm described above is applied to study three examples.
The first two examples have linear boundary conditions and the numerical results
are compared with the analytical solutions. The numerical results for the third
example, which has a nonlinear radiation boundary condition, are computed using
the iterative procedure (Eq. (23)). In all the examples, the boundary is discretized
into linear elements and the corners are rounded off as suggested by Brebbia et al.

[21].
i. A Long Bar

The classical example of convection heat transfer problems, which is often used
to test numerical algorithms, is the one-dimensional problem of a long bar moving
at constant velocity, V, subject to T=T, at x=0 and T=7, at x=L [30]. The
numerical values adopted for the geometric dimensions, physical properties, and
boundary values are L=6m, a= —0.8 to 3.0 (1/m), 7,=300°K, and 7, =0°K.
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FiG. 2. Boundary discretization of the one-dimensional probiem. Temperatures at points designated
by * are plotted in Fig. 3.

The analytical solution to this problem is easily shown tc be

T, sinh(a(6 —x))
300 °  sinh(6a)

The bar is modeled numerically as two-dimensional with a height of 0.2 m and
discretized using 42 equal linear boundary elements, as appears in ¥ig. 2. Numerical
results are presented in Fig. 3 along with the analytical solution {Eq. (25)} for the
above range of a. A very good agreement can be seen between the two. It shouid
be stressed here that the match is still very good even within the region of the sharp

front due to a large value of a. Furthermore, our additional numerical experiments
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finite element solutions present oscillations, particularly near the sharp front, and
thus special numericai schemes such as upwinding or streamline upwinding must be
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FiG. 3. Temperature distribution for various « values for the one-dimensional problem.
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used to minimize this oscillatory behavior [30, 317]. Other studies [16, 17] also
found that the boundary element solution, apart from its freedom from oscillations,
possesses a higher accuracy than the finite element solution.

il. A Rectangular Plate with Linear Boundary Conditions

This second example studies temperature distributions over a two-dimensional
domain, as shown in Fig. 1, with the numerical values « =0.15 (1/m), L=6m, and
b=4 m and subject to the following boundary conditions:

T(x, —4)=T(x,4)=0 (26)
7(0, y)=0 (27)
2—5(6, y)—aT(6, y)= 100 (28)

The analytical solution to this problem can be obtained by the finite Fourier trans-
formation after substituting 7= ge** into the governing equation (Eq. (1)}). The
results are

1 sinhxp, . an(y+4)

- 29
_np,cosh 68, T (29)

T(.\', y)=__ ax Z
T n=13.5..
where f2=a?+n’n’/8%
Figure 4 compares the analytical solution with numerical results obtained using

000 050 100 150 200 250 300 350 4.00 45 500 550 6.00
4.00 T T T T T T 1 ——— s e T 4.
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T 71
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o
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0.00 0.50
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FiG. 4. Temperature distribution for the two-dimensional problem with linear boundary conditions.
Analytical solutions are indicated by solid lines and numerical solutions by dashed lines.



BOUNDARY ELEMENT SOLUTIGN 585

84 linear boundary clements. Because of the symmetry with respect to y =0, only
the upper half of the domain is used. It can be seen that the resulis agree very well,

iti. The Rectangular Plate with Nonlinear Boundary Conditions

In this example. the geometric dimensions and physical properties are the same
as in the previcus case. However, the boundary conditions on the upper and lower

boundaries are relaxed so as to allow a combined heat transfer due to convecticn
and radiation, ie,

Gg=hT,—T)—oce(T*~ T3, y=+4 {30

The other boundary conditions are
70, 1)=T, (313
16, y)=T.,. (32

Again, only the upper half domain is used because of the symmetry of the problem.
The whole boundary is discretized into 164 linear elements. The successful substitu-
tion iteration procedure, as described in Section I, is employed and convergence is
achieved after ecight iterations. Additional numerical experiments have alsc besn
conducted and the solutions are all converged within 10 iterations. The isothermatl
contours for the above problem are plotted in Fig. 5. where the following values are
used: 7,=273°K, To=600°K, gz =3.0x 10" W/ (m’K*). #=0.25 W/(m?K), and
d=1x10"% A three-dimensional view of the temperature distribution over the
domain is given in Fig. 6. Inspection of Figs. 5 and 6 shows that while the fem-
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FiG. 5. Temperature distribution for the two-dimensional problem with nonlinear boundary

conditions.
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F1G. 6. Three-dimensional view of the temperature distribution for the nonlinear two-dimensional
convective heat diffusion problem whose temperature conture is shown in Fig. 5.

perature along the center line (y =0) changes almost linearly, that along the outer
boundary (y=4) varies dramatically because of the convective and radiative
boundary condition, which is as expected.

IV. DiscussioN

In the above, an efficient boundary element algorithm and its validation have
been described. Several other related aspects of the boundary element solution of
convective heat transfer problems warrant a separate discussion, however.

1. Fictitious Source Formulation

In Section ITA the general equations for the boundary element solution of
convective diffusion problems are formulated; in Section ITB their implementation
is described. An alternative to that implementation is obtained by introducing
fictitious heat sources, a method used extensively in solving electrostatic or source-

free magnetic problems [31].
In this approach, the scalar field, ¢ or T, is assumed to be due to the “heat

charges” distributed along the boundary, i.e.,

#r)=] oyt G*(e vy dIIr) (33)



BOUNDARY ELEMENT SCLUTION 267
of

T ={ o) G**(r,v') dI(r') (34)

YR

where ¢ is an unknown charge distribution on the domain boundary to be solved
for by matching the boundary conditions imposed on variable ¢ or 7 the sub-
scripts represent the fields generated by the charges. Comparison of (33} with {34},
together with the transformation 7 = ¢e™, reveals that

IZ.\'- (

or(r)=o4r)e”

The above formulation offers a major advantage in that the well-established
programs for solving electrostatic or source-free magnetic problems can be easiiy
modified (in most cases, only the boundary conditions need be changed and
incorporated into the codes), to tackle the convective heat transfer problems, thus
reducing programming effort.

it. Finite Element Formulation

Although the transformation, T=e™, has simplified the boundary element
formulation, it can also be used to derive a functional so as to facilitate the finite
element solution of the convective heat transfer problems expressed by Eq. {1}.

In general, the finite element formuiation of the problem is done through the
weighted residue method or weak formation [7], which, in the presence of convec-
tive terms, generally does not obey the variational principle and resuits in a banded,
unsymmetric stiffness matrix. However, starting with Eq. (2), it is straightforward to
construct the variational integral as

1 . 1y ,
HT)= ——j e VT NT AV —= | e ™ W(T—T)dl {36)
200

hal o]

which corresponds to the convective heat transfer problem described by Eq. (13,
subject to the natural boundary conditions
oT

—=-nT-T) on 08. 37N
on

This can be easily verified by substituting the functional (Eq.(36)}) intoc the
Euler—Lagrange differential equation [337:

\
3

&J &y ,
a_T“V'[a(VJ)}O‘ 9

Application of the finite element solution procedure to Eq.{36) gives rise (o a
banded, symmetric matrix equation which can be solved very efficiently by
available linear solvers.

QO
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iii. Formulation of Time-Dependent Problems

The procedures described in Section II can be naturally extended to formulate
boundary element integrals of time-dependent convective heat transfer problems.

__ With time as_an additional variable. the differential eauation hecomes

o’T o°T oT oT
4 —=-20—=D"1—, 39
T T e 2 (39)
where D is the thermal diffusivity. Following the procedures in Section I, it is easy
to show that

C(r) T(r, 1) +jr j T(r', 1) g**(x, £; 1, 1) dI(r') dt

1o Y3

=J‘ f g(r', 1y G**(r, t;¢', 1) dI (') dt
o Vo2

+[ 10, 10) G**(x, 131, 1) AV, (40)
b

where G** corresponds to the fundamental solution of Eq. (39).

—aD(r— 1)

G**(r, t;1v', 1) = ——4D7r(t = e WX —x) p—Ir—r124D(1— ) (41)

The numerical solution of the integral equation (40) follows the same procedure as
in Section IT except that the domain integral term needs special treatment. The
commonly used approach is to divide the domain into small internal cells over
which the body integral is carried out [21, 34]. Having to discretize the whole
domain has destroyed the feature of formulating problems only along the boundary.
This has inspired some investigators to look for a boundary-alone method.
Recently, the principle of dual reciprocity has been demonstrated to be very useful
to formulate the time-dependent potential problems and interested readers are
referred to Refs. [28, 35] for details.

iv. Extension to Three-Dimensional Problems

Thus far, the boundary element formulations and solution procedures have been
discussed with respect only to two-dimensional convective heat transport probiems.
The solution of three-dimensional problems is, however, very similar and is
described in detail elsewhere [16, 17] for a steady-state problem. The transient
three-dimensional problems can be solved by following the procedure outlined in
Section [V.iii and the corresponding fundamental solution needs to be used, which
can be obtained by the integral transformation method [9]. For convenience, this
fundamental solution is given as

e—sz([—ri | 2aD )
G* t r, — , — = 171. 42
o ) = Dt — )2 ¢ (42)
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V. CONCLUDING REMARKS

This paper has presented, in detail, a boundary element method for the solution
of steady-state convection/diffusion problems in homogeneous and isotropic media
with arbitrary (including nonlinear) boundary condiiions. The method eliminates
the common treatment of the convection part of the equation as a source term, as
is required in other methods, through the use of the exponential variable transior-
mation and thus permits the problem to be formulated using field variables such as
temperature and/or heat flux only along the boundaries. Numerical solution proce-
dures have been described with a special discussion of the singular integrals arising
from the formulation. Two examples with linear boundary conditions have showrn
that the resuits obtained by this method compare very well with available analytical
solutions. The method has been further illustrated by the third example which has
a nonlinear boundary condition and is solved iteratively using the successive sub-
stitution technique. As a result of solving the problems only along the boundaries
by this method, the number of unknowns is reduced in comparison wita other
methods in present use, thereby increasing computational efficiency.

Fictitious source formulation has been discussed as an alternative and the
integral form of the solution has been given. This work has also extended the
methodology to formulate the boundary integral solution of transient and/or
three-dimensional convective heat diffusion problems and listed their relevant
fundamental sclutions. As a fringe benefit of the exponential variable transforma-
rion, a functional of variational principle has been constructed which leads
naturally to the finite element formulation of the convection—diffusion problems
with a resulting banded, symmetric stiffness matrix. thus permitting the use of
computationally efficient linear solvers.

APPENDIX
Referring to Fig. A1, x'(£) can be expressed as a function of local coordinate ¢,
as
F(E) =1 =) ¥+ L1+ E) ¥ = H1 = O — x4 (AL}

Bv a variable transformation,

p=laJ] {1 —=C); (AZ)
g\ can be expressed as
(1) 1 —xlxy—x) !-2li| — fu ) AN
& = L 7] D “Kolu) dp, (A3}
where
(x7—x5) Ca A
=577 (A4)
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jth element

FiG. Al. A typical boundary element with a local coordinate system.

The integrand is well behaved and can be integrated numerically, since

lim pe % Ky(p)=lim — pe #*1n u=0. (AS)
u—0

=0

It is a simple matter to show that

2

1

. Ji
2) _ —af{xy —x) ~ﬂuk d (1)' A6
& =2 ia® L olp) du— g3 (A6)

The integrand, e #“K,(u), is not well behaved, however, and possesses a
logarithmic singularity. The integration can be evaluated analytically for some
special cases [19], ie.,

2ad|
J e PKy(p) du=21aJ e K2 o)) + K, (2 |ed])) £ 1 (B=£1)
0

(A7)
and
~2 ||
J, e Kol du
(20
—(y+1n |a])(2 o)) Z kD)
< (| )*
+ (2 |e]]) g ——————k')z % r1)
o] 2k 1 1
+ (2 aJ]) z @%?%ﬁ(l-ki-% +%> (f=0), (A8)

where 7 is the Euler constant and y=0.5772156649 - - -
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Note that the integral appearing in g|;' can also be evaluated anaiytically when

#=0 [19].

2 |2J]

uKo(p) dp= —2 |aJ| Ky(2 lad) + 1. (AT}

For an arbitrary f5, the following step can be taken to evaluate the first term in
Eq. (A6):

<2 12| |
J e PR u) dyzj (e " —1) Ko(u) du + f
0

2o 2
0 Yo

Ex

Kolp)du. (ALY

While the last term in the above equation is nothing but Eq. (A8), the first term can
be numerically integrated as the integrand is now well behaved, ie.,

lim (¢ P — 1) Ky{u) = lim puln p=0. (Al
u—0

u—0
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