
SOIJRNhL OF COMPVTATIONAL PHYSICS 93. 255-272 ( 1991) 

Boundary Element Sol 
Heat Convection-Diffusio 

B. Q. II* AND J. w. EVANS 

.4 boundary element method is described in detail for the solution of two-dimensiona! 
steady-state convective heat diffusion problems in homogeneous and isotropic media w& 
both linear and nonlinear boundary conditions. Through an exponential variable transforma- 
tion, the introduction of fundamental solutions and the use of Green’s theorem, the problem 
is reduced to one involving values of temperature and/or heat flux in the form of an integrrl 
only along the boundary. The integral is solved numerically for three examples Two of 
them have linear boundary conditions and their numerical results are compared with the 
corresponding analytical solutions. The other has a nonlinear boundary condition due to heat 
radiation and an iterative procedure is applied to obtain the numerical solution. The fictitious 
source formulaoon leading to the boundary element solurion of the same problems is 
discussed as an alternative. The extension of the method to formulate transient a&or 
three-dimensional convective heat diffusion problems is also described. and the reievanr 
fundamental soiutions are given. Finally. the exponential variable transformation is appiied to 
construct a functional of variational principle which leads to developing a finite element 
formulation of the problems with a banded, symmetric stiffness matrix. i 1991 Acddemis 

Press, Inc. 

I. INTRODUCTION 

Convective heat (and/or mass) transfer occurs as a basic phenomenon in many 
physical processes, such as single crystal growth [I], thin film growth [.213 optical 
fiber processing 1341, laser-assisted surface hardening ES], continuous casting 
163, etc. In these processes, a knowledge of the distribution of field variables such 
as temperature or concentration is of vital importance to the understanding of the 
physics controlling the properties of the materials to be processed. Because of this 
importance, there have been continuous research efforts toward the mere efficient 
and accurate prediction of the field distribution. In the case where the mcdilcm is 
fluid the complete mathematical description of the heat convection problems ~would 
be a set of equations composed of the Navier-Stokes equations, which govern the 

* Present address: ALCOA Technical Center, ALCOA, PA 15069. 

255 



256 LI AND EVANS 

flow field, coupled with the Fourier heat conduction equation with convective terms 
included. However, in some situations [l-6], for example, where the workpiece is 
solid and moves as a whole at a constant velocity with reference to a fixed coor- 
dinate, the heat transfer mechanism can be described by heat conduction with a 
constant convective velocity, and hence the solutional algorithm should be greatly 
simplified. 

Numerical algorithms developed to solve this type of problem can be classified, 
in general, into two categories, the domain method and the boundary method, with 
the former comprised of the finite difference and finite element methods and the 
latter comprised of the boundary element or boundary integral methods. All the 
algorithms, however, have one feature in common in that they start with the pure 
diffusion equation and then incorporate a special treatment of the convection term. 

The approach adopted in the finite difference method is to approximate the 
partial differential operators by finite difference operators. Likewise, the convection 
term is approximated by either a forward-, central-, or backward difference scheme 
depending on the geometric locations under consideration [S, 61. In the finite 
element approach, on the other hand, the weighted residue method or weak 
formulation is often used to formulate the problem, which usually results in an 
unsymmetric banded coefficient matrix because of the presence of the convection 
term. The solution of the resultant unsymmetric matrix is often computationally 
time-consuming, which is especially true when the nonlinear properties are to be 
accounted for. This has motivated some investigators [S] to treat the convection 
term as a “source term” in order to preserve the banded symmetry for the resultant 
matrix, so as to facilitate the use of efficient linear solvers. In doing so, however, an 
iterative procedure must be used. 

In recent years, there has been increasing interest in using the boundary element 
method to solve virtually all kinds of applied continuum mechanics problems 
because of its potential to reduce problem dimensionality. The method formulates 
the problems using properties only along the boundaries of the problem domain 
through the use of Green’s second identity and the corresponding fundamental 
solution or Green’s function in infinite space [S-lo]. This should be very attractive 
because using the boundary properties alone means the reduction of the number of 
unknowns to be solved for, thus saving computing time. Sometimes this approach 
is also considered as a generalization of weighted residual formulation with the 
fundamental solution regarded as a special weighting function [ 111. 

Treatments of heat convection problems in this category are those of Skegart and 
Brebbia [12] and of Onishi et al. [13]. In their approaches, the convection term 
is treated as a “source” term and the fundamental solution to the Laplacian equa- 
tion (or pure diffusion equation) is used. As a result, an iterative procedure has to 
be used to solve the resulting discretized equations. Moreover, the attraction of 
reducing problem dimensionality seems to disappear since the “source” is fully 
populated over the whole domain. The scheme is not particularly suitable for heat 
diffusion with a uniform motion as the problem could be otherwise entirely 
formulated only along the boundaries (see below). Nevertheless, their approaches 
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are general in the sense that they are applicable to the problems of diffrrsron with 
both constant and/or varying flow field. 

In this paper, a methodology for the boundary element (or boundary integral) 
solution of heat convection-diffusion problems based on an exponential transforma- 
tion is described. While the transformation has been used elsewhere [14-151 for the 
purpose of generating analytical solutions, its use in assisting the formulation of 
boundary element solutions to problems involving both convection and diffusion 
has been largely overlooked and only a few papers have been published [I&I ??I. 
Ekeuchi et u!. [t6, 171 presented a constant boundary element solution of 
convective heat transfer in three dimensions with linear boundary conditions while 
Okamoto [lg] derived a boundary element formulation of a chemical reactioc 
system where both convective diffusion and chemicai reaction occur. In what 
foliows, the boundary element formulation and imp~eme~~atio~ of a two-dimer- 
sional convection-diffusion problem is first presented, followed by its application to 
three examples with both linear and nonlinear boundary conditions, and the 
mmerical results are compared with the analytical solutions available. A !kti:ions 
source formulation leading to the boundary element solution is then discussed as an 
alternative approach. Also, a functional of variational principle is constructed 
through the application of the exponential transformation, which naturaily puts the 
f-mite element formulation of this type of problem on the basis of variationa! 
principle and results in a banded, symmetric linear system. Fina!ly, exteosioc of 
the formulation and solution procedures to the solution of tame-dependent arid 
three-dimensional heat convectiondiffusion problems is discussed and rek~ant 
fundamental solutions are presented. 

Ii. BOUNDARY ELEMENT FORMULATION AND NUMERICAL IMPLEMENTATWN 

A. Problem and Formulation 

The problem of heat convectiondiffusion to be considered is illustrated in Fig. i. 
where a workpiece moves at a constant velocity Y and alters its temperature 
distribution by exchanging heat with the surroundings. When formulated in EuZer’s 
coordinates, the problem takes the form 

where T is the temperature, x the unit vector of s-direction, and x s %Tpc,;2k in 
p is the density, cP the heat capacity, and k the thermal conductivity. The 

boundary conditions imposed are assumed to be of Dirichlet5 Neumann, radiation, 
or mixed type. 

The approach taken here to develop the boundary element formulation of ihe 
above problem involves reducing the problem to a elmhohz equation through a 
variable transformation and subsequently solving the equation. 
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FIG. 1. Schematic representation of a convective heat diffusion problem. 

The variable transformation has the form [14, 1.51 

T = q3eax. (2) 

Upon substituting it into Eq. (1) and rearranging, one obtains the Helmholtz 
equation as 

V’rp - c1+l3 = 0, (3) 

where 4 is an intermediate variable. 
Note that Eq. (3) is similar to an equation of wave propagation but different 

from it in that the coefficient of the second term is a real number. This real number, 
in the terminology of wave scattering, indicates a decay of thermal “waves” 
associated with Eq. (3). 

The fundamental solution corresponding to Eq. (3 j should satisfy the equation 

V’G*-a”Gl= -a(r-r’) (4) 

and, in general, is expressible as [9], 

G*(r, r’)= -iHj:‘(i IE(r-r’jl j (5) 

but can be cast in a more useful form [19], i.e., 

G*(r, r’)=&K,(la(r-r’)l), (6) 

where Hi” is the Hankel function of the second kind of order zero, i= \,I- 1, 



BOUNDARY ELEMENT SOLUTION 259 

jr-r’1 = [(-Y-x’)~ + (I,- ~>‘)*]l:‘, and K, the modified Bessel function of the 
second kind of order zero. 

The general procedures leading to the boundary integral formulation are 
illustrated as follows. Upon multiplying Eq. (3) by tY3* and Eq. (4) by 4 and 
subtracting, followed by integrating over the whole domain one has 

[ a(r - f) #(r’) &’ = jQ (G*V’f$ - qW*G*) Lb’. ! 7 ;:I 
JR 

While the domain integral on the right-hand side can e reduced to a Sow&xy 
integral by applying Green’s second identity, 

that on the left-hand side can be integrated analytically by appIy~ng a limit 
procedure [2C)] when r lies on the boundary, viz., 

In the above two equations, R represents the domain of interest, dQ its boundary. 
4 the derivative of 4. and q* the derivative of the fundamental solution G”, 

where K, is the modified Bessel function of the first kind of order one. T 
ficient C(rf generally takes the following values depending on the location ol” r 
[21]: 

when r lies inside domain Q 

when r lies on a smooth boundary dQ 

c (7i+;‘r-jl~)/27t when r lies on a nonsmooth boundary 30, 

where ?I and 5’: are the angles between the outward normal of tke non-smooth 
boundary and x-direction around a sharp corner point. 

Upon substituting Eqs. (8) and (9) back into Eq. (7), followed by the inverse 
transformation of Eq. (2) and rearranging, one obtains the integral formulation of 
the convective diffusion problems using the field values only along the boundaries. 
i.e., 
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Note that the above boundary integral may be derived directly starting with Eq. (1 i 
if its corresponding fundamental solution is regarded as 

G*X = QNe-“W-‘l (12) 

B. Boundary Element Implementation 

The detailed procedures by which the boundary integral equation (12) is solved 
are documented in the literature [21, 221. In general, they involve discretizing the 
relevant boundaries into small elements over each of which a polynomial inter- 
polation function of unknowns is constructed, then evaluating the source-response 
coefftcients between the boundary elements, and finally solving the resultant matrix 
equations for the unknowns. Polynomials of various degree may be used as an 
interpolation function over an element, but the choice is usually made based on 
a combination of the accuracy requirement and computational efficiency. In this 
study, a linear element is universally used in generating the results that are presented 
in the next section. 

Following the discretization procedure and also making use of the isoparametric 
elements to represent the geometric variation of the boundaries, one can write the 
boundary element form of the integral equation for a point under consideration, ri, 
as 

+ cc g G*(r,, r’(c)) e-+%)-x-t) /J(t)/ dl 

= [Ic/‘((), 11/*(l)] G*(ri, r’(t)) e-xi~y’ce)-.xz) lJ(c)l dt , (13) 

where $p (p = 1, 2) is the interpolation function, /J(t)1 the Jacobian of the coor- 
dinate transformation, [ the local coordinate, N the total number of boundary 
elements, and j the element number. 

After applying Eq. (13) to all boundary nodes, one finally obtains a set of 
equations which, when written in matrix form, become 

where 

WI P) = CWW~ (14) 

G, = g$m , + g$ (15) 

Hi,= 
h!? +h’J’ 

I./--l 4 ./ for j#i 
hP! 

l.J--l 
+ h!? + c. 

,.J I 
for j=i (16) 
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and g;.“: and hi.“;’ are of the form 

The above element integrals can be evaluated numerically using Gaussian 
quadrature when node i does not belong to the jth element. In rhe present study, 
the four-point integration rule is used. The modified Bessel functions of the second 
kind of order zero or one are approximated by the polynomials given by 
Abramowitz and Stegun [23]. 

When node i happens to lie on the jth element, however, the Gauchy principal 
value of the integrals must be taken because of the occurrence of singularity in the 
fundamental solution. Caution must be exercised in treating the singularity here as 
it plays a crucial role in determining the accuracy of the solution. Although some 
numerical quadrature rules have been developed for estimating the integration of 
singularities [21], they apply only to some simple cases and thus have Ii&ted use. 
As a rule of thumb. the term involving singularity should be analytically evaluated 
whenever possible in order to minimize errors aa computation. Since the treatment 
of singularities encountered in the present study is tedious, only an outline is given 
below and the details are left in the Appendix. In the above equations, the integral 
involving q* is zero as a consequence of orthogonahty between the outward norma! 
of tbe jth element and the direction of the integration path. Qf rhe two gri terms, 
one can be shown to have a well-behaved integrand, thus permitting a nnmerical 
integration, and the other may be integrated analytically (see Appendix), 

Before the matrix equation (14) is solved, the boundary conditions musr be 
imposed. With the Dirichlet and Neumann boundary conditions. Eq. (14) can be 
rearranged such that 

where {nj is a set of unknowns of temperature or its derivative. Equation ( 19) is 
thsen solved by the standard Gaussian elimination method. 

When part of the boundary is subject to boundary conditions of mixed type, i.e.. 

the discretized matrix equations for this part of the boundary will be 

[N](T) = [G](q) = [Gl({ 
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or 

(WI + CENT) = CGIW 

which has the same form as Eqs. (19). In this case, after the system of Eqs. (19) is 
solved, the normal derivatives of potentials along that part of the boundary can be 
evaluated pointwise using Eq. (20). 

When nonlinear boundary conditions (e.g., due to heat radiation) are considered, 
the coefficients d and e in Eq. (20) are temperature dependent and so are [K] and 
{Fl Consequently, an iterative procedure must be employed to solve the system of 
the resulting nonlinear equations. There are available many algorithms 1124,251. 
Some of them, which are based on the Newton-Raphson and/or optimization 
schemes and possess a relatively high convergence rate, have been successfully 
applied to solve nonlinear potential problems [26-291. For the sake of illustration, 
a simple successive substitution procedure is adopted in this study, viz., 

W(‘Ldl~~i) = {UT,-,)). (23) 

The iteration continues until the present tolerance, 6, on each individual ~4,~ is met, 

(24) 

It is noteworthy that, in contrast to divergence encountered with the use of the 
successive substitution in pure nonlinear diffusion problems [Zl], this study has 
found that convergence is well achieved within 10 iterations for the various cases 
tested (.see below) for a specified b = 1 x 10 P4. 

III. NUMERICAL APPLICATIONS 

In this section, the algorithm described above is applied to study three examples. 
The first two examples have linear boundary conditions and the numerical results 
are compared with the analytical solutions. The numerical results for the third 
example, which has a nonlinear radiation boundary condition, are computed using 
the iterative procedure (Eq. (23)). In all the examples, the boundary is discretized 
into linear elements and the corners are rounded off as suggested by Brebbia et al. 

WI. 

i. A Long Bar 

The classical example of convection heat transfer problems, which is often used 
to test numerical algorithms, is the one-dimensional problem of a long bar moving 
at constant velocity, I’, subject to T= T, at x = 0 and T= T, at .X = L [30]. The 
numerical values adopted for the geometric dimensions, physical properties, and 
boundary values are L = 6 m, CI = -0.8 to 3.0 (l/m), T, = 300” K, and T, = O’K. 
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X-AXIS (n-t> 

FK. 2. Bour.dary discretization of the one-dimensional problem. Temperatures a! pokts designaier! 
by * are plotted in Fig. 3. 

The analytical solution to this problem is easily shown to be 

T -=r”‘ sinh(ol(6-x)) 
300 sinh(6cz) 

The bar is modeled numerically as two-dimensional with a height of 0.2 m and 
discretized using 42 equal linear boundary elements, as appears in Fig. 2. Numerical 
results are presented in Fig. 3 along with the analytical solution (Eq. (25)) for the 
above range of c(. A very good agreement can be seen between the two. It should 

be stressed here that the match is still very good even within the region of the sharp 
front due to a large value of c(. Furthermore, our additional numerical experiments 
have demonstrated that the boundary element solution is not prone to oscillation 
even at high Peclet numbers (2ixb). This fact indicates that the boundary element 
method is superior to the domain-based methods as both the fkite difference and 
finite element solutions present oscillations, particularly near the sharp front, and 
thus special numerical schemes such as upwinding or streamline upwinding must be 
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FIG. 3. Temperature distribution for various z values for the one-dimensional problem 
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used to minimize this oscillatory behavior [30, 311. Other studies [16, 171 also 
found that the boundary element solution, apart from its freedom from oscillations, 
possesses a higher accuracy than the finite element solution. 

ii. A Rectangular Plate with Linear Boundaty Conditions 

This second example studies temperature distributions over a two-dimensional 
domain, as shown in Fig. 1, with the numerical values CI = 0.15 (l/m), L = 6 m, and 
b = 4 m and subject to the following boundary conditions: 

T(x, -4) = T(x, 4) = 0 (26) 

T(0, y) = 0 

$(6, JJ) - G(6, y) = 100e6’. 

The analytical solution to this problem can be obtained 

(27) 

(28) 

by the finite Fourier trans- 
formation after substituting T= de’.= into the governing equation (Eq. (1)). The 
results are 

1 
T(x, y)=yemx f - 

sinh xp,, sin nrt( J + 4) 
’ ,, = 1.3. 5. dn ash 6Pn 8 ._. 

(29) 

where /3f = cl” + n’rt”l8’. 
Figure 4 compares the analytical solution with numerical results obtained using 

X-AXIS (m) 

FIG. 4. Temperature distribution for the two-dimensional problem with linear boundary conditions. 
Analytical solutions are indicated by solid lines and numerical solutions by dashed lines. 
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84 linear boundary elements. Because of the symmetry with respect to J’ = 0, only 
the upper half of the domain is used. It can be seen that the results agree very weil. 

iii. The Recmzgular Plate 1titlz Norzlinear Bomdar~,~ Condihons 

In this example. the geometric dimensions and physical properties are the same 
as in the previous case. However, the boundary conditions on the 
boundaries are relaxed so as to allow a combined heat transfer d 
and radiation. i.e., 

q=lz(T,- T)-os(T”- T;fJ3 ;’ = 14. (j*Qj 

The other boundary conditions are 

T(0, y) = To (31’! 

T(6, y) = T,,. [-j,$ 

Again, only the upper half domain is used because of the symmetry of the problem. 
The whole boundary is discretized into 164 linear elements. The successful subsrltu- 
tion iteration procedure, as described in Section II, is employed and convergence is 
achieved after eight iterations. Additionai numerical experiments have also been 
conducted and the solutions are all converged within 10 iterations The isothermal 
contours for the above problem are plotted in Fig. 5. where the following values are 
used: T = 373’K, To = 600°K cry = 3.0 x IO-* W/(m’K”). h = 0.25 W/(m2K), and 
A = 1 x fO~-‘~ A three-dimensional view of the temperature distribution over he 
domam is given in Fig. 6. Inspection of Figs. 5 and 6 shows that while the tem- 

X-AXIS (rn) 

FIG. 5. Temperature distribution for the two-dimcsional problem with no&near boundary 
conditions. 
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FIG. 6. Three-dimensional view of the temperature distribution for the nonlinear two-dimensional 
convective heat diffusion problem whose temperature conture is shown in Fig. 5. 

perature along the center line ( JJ = 0) changes almost linearly, that along the outer 
boundary (y = 4) varies dramatically because of the convective and radiative 
boundary condition, which is as expected. 

Iv. DISCUSSION 

In the above, an efficient boundary element algorithm and its validation have 
been described. Several other related aspects of the boundary element solution of 
convective heat transfer problems warrant a separate discussion, however. 

i. Fictitious Source Formulation 

In Section IIA the general equations for the boundary element solution of 
convective diffusion problems are formulated; in Section IIB their implementation 
is described. An alternative to that implementation is obtained by introducing 
lictitious heat sources, a method used extensively in solving electrostatic or source- 
free magnetic problems [ 311. 

In this approach, the scalar field, 4 or T, is assumed to be due to the “heat 
charges” distributed along the boundary, i.e.. 

9(r)= j aJr’) G*(r, r’) dZ7r’) (33) 
?R 
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T(r) = [ uT(r’) G**(r, r’j dT(r’,! 
U?.o 

where o is an unknown charge distribution on the domain boundary to be solve 
for by matching the boundary conditions imposed on variable 4 or T; the sub- 
scripts represent the fields generated by the charges. Comparison of (33) with (34 )? 
together with the transformation T= &z”“, reveals that 

uT(r) = ad(r) ,Cas. (,35) 

The above formulation offers a major advantage in that the well-established 
programs for solving electrostatic or source-free magnetic problems can be easiiy 
modified (in most cases, only the boundary conditions need be changed and 
incorporated into the codes), to tackle the convective heat transfer problems, thus 
reducing programming effort. 

ii. Finite Element Fomulution 

Although the transformation, T= e”“, has simplified the boundary element 
formulation, it can also be used to derive a functional so as to facilitate the finite 
element solution of the convective heat transfer problems expressed by Eq. (I). 

In general, the finite element formulation of the problem is done through the 
weighted residue method or weak formation [7], which, in the presence of convec- 
tive terms, generally does not obey the variational principle and results in a banded, 
unsymmetric stiffness matrix. However, starting with Eq. (2 ). it is straightforward to 
construct the variational integral as 

which corresponds to the convective heat 
subject to the natural boundary conditions 

transfer problem described by Eq. C I ), 

Ihis can be easily verified by substituting the functional (Eq. (36)) into the 
Euler-Lagrange differential equation [33]: 

Application of the finite element solution procedure to Eq. (36) gives rise to a 
banded, symmetric matrix equation which can be solved very efficiently by 
available linear solvers. 
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iii. Formulation of Time-Dependent Problems 

The procedures described in Section II can be naturally extended to formulate 
boundary element integrals of time-dependent convective heat transfer problems. 
With time as an additional variable, the differential equation becomes 

(39) 

where D is the thermal diffusivity. Following the procedures in Section II, it is easy 
to show that 

C(r) T(r, t) + /rl j?, T(r’, t) q**(r, t; r’, t) dT(r’) dz 

rt 
= 

JS 
q(r’, t) G**(r, t; r’, t) df(r’) dz 

10 BR 

+ .iQ T( r’, to) G**(r, t; r’, to) dV(r’), (40) 

where G** corresponds to the fundamental solution of Eq. (39). 

G**(r, t; r’, 5) = e 
-a2ll(t--r) 

4Dx(t-rJe 
-JL(.X-X) e~lr-r’I’:4D(r~r) (41) 

The numerical solution of the integral equation (40) follows the same procedure as 
in Section II except that the domain integral term needs special treatment. The 
commonly used approach is to divide the domain into small internal cells over 
which the body integral is carried out [21, 341. Having to discretize the whole 
domain has destroyed the feature of formulating problems only along the boundary. 
This has inspired some investigators to look for a boundary-alone method. 
Recently, the principle of dual reciprocity has been demonstrated to be very useful 
to formulate the time-dependent potential problems and interested readers are 
referred to Refs. [28, 351 for details. 

iv. Extension to Three-Dimensional Problems 

Thus far, the boundary element formulations and solution procedures have been 
discussed with respect only to two-dimensional convective heat transport problems. 
The solution of three-dimensional problems is, however, very similar and is 
described in detail elsewhere [16, 171 for a steady-state problem. The transient 
three-dimensional problems can be solved by following the procedure outlined in 
Section IV.iii and the corresponding fundamental solution needs to be used, which 
can be obtained by the integral transformation method [9]. For convenience, this 
fundamental solution is given as 

(42) 
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V. CONCLUDING REMARKS 

This paper has presented, in detail, a boundary element method for the solution 
of steady-state convection/diffusion problems in homogeneous and isotropic media 
with arbitrary (including nonlinear) boundary conditions. The method eliminates 
the common treatment of the convection part of the equation as a source term, as 
is required in other methods, through the use of the exponential variable transfor- 
mation and thus permits the problem to be formulated using field variables such as 
temperature and/or heat flux only along the boundaries, Numerical solution proce- 
dures have been described with a special discussion of the singular integrals arising 
from the formulation. Two examples with linear boundary conditions have shown 
that the results obtained by this method compare very well with available anaiyticai 
solutions. The method has been further illustrated by the third example which has 
a nonlinear boundary condition and is solved iteratively using the successive sub- 
stitution technique. As a result of solving the problems only along the boundaries 
by this method, the number of unknowns is reduced in comparison wit3 other 
methods in present use, thereby increasing computational efficiency. 

Fictitious source formulation has been discussed as an alternative and the 
integral form of the solution has been given. This work has also extended the 
methodology to formulate the boundary integral solution of transient and/or 
three-dimensional convective heat diffusion problems and listed their relevant 
fundamental solutions. As a fringe benefit of the exponential variable transforma- 
tion, a functional of variational principle has been constructed which ieads 
naturahy to the finite element formulation of the convection-diffusion problems 
-with a resulting banded, symmetric stiffness matrix, thus permitting the use of 
computationally efficient linear solvers. 

APPENDIX 

Referring to Fig. AI, x’(r) can be expressed as a function of local coordinate 5. 
as 

y’(iT)=~(l--).X;+~(l+~)S~=~(l-g)(rl-~~i)+.~~. 

By a variable transformation, 

p=lrJl (l-i’); 

gz ’ can be expressed as 

where 
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FIG. Al. A typical boundary element with a local coordinate system. 

The integrand is well behaved and can be integrated numerically, since 

It is a simple matter to show that 

The integrand, e -BPKo(/~), is not well behaved, however, and possesses a 
logarithmic singularity. The integration can be evaluated analytically for some 
special cases [19], i.e., 

s 
“OrJ’ epPpKo(p) dp = 2 109 e-2bio4(Ko(2 IaJI) + K,(2 IaJI)) * I (P= 21) 

0 

(A7) 

and 

= -(y+ln WIN2 IaJl)k~otk,:Q!j~2~ 1j 

+(21~~l),~o(k!:!l;~~~1)2 

m ( IaJl )2k 
+ t2 IaJI) kTL (k!)2 (2k+ 1) 

1 1 
I+?+ ‘.’ +z > (B=O), (Ag) 

where 1’ is the Euler constant and 7 = 0.5772156649 ... 
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e integral appearing in g,: ’ can also be evaluated a~a~~tica~~~ when 
B=O 11191. 

For an arbitrary fi, the following step can be taken to evaluate the firsr term in 
Eq. (M): 

While the last term in the above equation is nothing but Eq. (A8), the first term can 
be numerically integrated as the integrand is now well behaved, i.e:, 
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